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Factors Affecting Enhanced Video Quality
Preferences

Prem Nandhini Satgunam, Russell L. Woods, P. Matthew Bronstad, and Eli Peli

Abstract— The development of video quality metrics requires
methods for measuring perceived video quality. Most of these
metrics are designed and tested using databases of images
degraded by compression and scored using opinion ratings.
We studied video quality preferences for enhanced images of
normally-sighted participants using the method of paired com-
parisons with a thorough statistical analysis. Participants (n =
40) made pair-wise comparisons of high definition video clips
enhanced at four different levels using a commercially available
enhancement device. Perceptual scales were computed with
binary logistic regression to estimate preferences for each level
and to provide statistical inference of the differences among levels
and the impact of other variables. While moderate preference
for enhanced videos was found, two unexpected effects were
also uncovered: 1) participants could be broadly classified into
two groups: a) those who preferred enhancement (“Sharp”) and
b) those who disliked enhancement (“Smooth”) and 2) enhance-
ment preferences depended on video content, particularly for
human faces to be enhanced less. The results suggest that
algorithms to evaluate image quality (at least for enhancement)
may need to be adjusted or applied differentially based on
video content and viewer preferences. The possible impact of
similar effects on image quality of compressed video needs to be
evaluated.

Index Terms— Television watching, image enhancement, image
quality.

I. INTRODUCTION

MEASURING image quality preferences (i.e., perceived
image quality), and proper statistical analyses of such

preferences, are essential for developing devices and tech-
niques for image acquisition, image processing, image display
and for setting broadcast, storage, and display standards. Com-
putational image quality metrics that attempt to predict the per-
ceived image quality perception are desirable, because direct
measurement of perceived image quality tends to be laborious
[1], [2] and expensive [3]. Besides using such computational
image quality metrics to develop new display systems [4]–[6],
such metrics can also be integrated within a system to
adjust image appearance in real time (e.g., by controlling
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compression, bandwidth or adjusting the amount of enhance-
ment applied).

Most widely used image quality metrics and their associated
image databases along with human-subject preference mea-
sures are centered on images degraded by compression (though
earlier metrics addressed low pass filtering and random noise
as the degradations of interest). One inherent assumption of
current computational image quality metrics is that all human
observers respond in a similar manner, and that differences
between responses to the same stimulus reflect measurement
noise, both within- and between-subjects. In this paper, we
present data that shows substantial between-subject differences
in the preference responses to a video enhancement. This
suggests that there may not be a (single) standard observer,
at least for image enhancement.

A second assumption implied in current computations of
human-subject image-quality responses is that responses are
independent of image or video content. While some effects
of image content have been acknowledged within the image-
quality-assessment community, we are not aware of any
published reports specifically addressing this issue. Small
differences in favored video enhancement between content
categories [7], and reductions in the impact of image com-
pression with content desirability [8]–[10] have been noted.
In our study, we found significant content-dependent effects.
If this is the case in general, image enhancement and image
quality algorithms may need to accommodate such content
differences.

Progress in computational image quality metrics requires a
solid understanding and accurate measurement of perceived
image quality [11]. Sensory scaling measures can be used
to determine the preferences of human observers [12]–[17].
Use of such grading or rating scales is included in the
ITU-R BT.500-13 standard recommendation for assessment of
perceived television picture quality [18] and have been applied
in measuring (mean) opinion scores for various image quality
databases. Such ratings can be analyzed to create estimates
similar to Thurstone scales [19]–[21] using custom software
[22], [23]. Pair-wise comparisons is an alternative measure that
generates reliable and informative data about perceived image
quality [24]–[27]. Pair-wise comparisons are widely used in
applied psychology, marketing, food tasting, and advertising
research [28]–[31]. Recently, two statistical methods have been
described that produce an outcome very similar to Thurstone
scaling while also providing inferential statistics [32], [33].
We [34] compared these two approaches, binary logistic
regression [32] and linear regression [33], and found very
similar outcomes. The Bradley-Terry-Luce model [35], [36],
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an alternative to Thurstone scaling, also has been used for
paired comparisons [26], [27], [37]. We prefer the binary logis-
tic regression approach [32], as the statistical significance can
be obtained with commonly-used statistical software without
the need for additional calculations or custom software. In
addition, since logistic regression is a widely used statistical
method it is well understood and it facilitates the development
and testing of models that account for experimental variables
and uncontrolled or confounding variables (as illustrated in the
Appendix), a capability that is not currently available with the
Bradley-Terry-Luce analyses [26], [27], [37]. In our study, we
analyzed the pair-wise comparisons of four video enhancement
levels using logistic regression models that included potential
confounding factors as covariates. The consequences of these
findings for video processing (enhancement and compression)
and for computational video quality metrics are discussed.

The original purpose of this project was to measure the
effect of image enhancement on perceived video quality.
However, we found the results, regarding between-observer
variability and image content effects to be of general impor-
tance and, therefore, we present these as the main emphasis
of this paper.

II. METHODS

A. Procedure

Participants viewed two versions of a 30s video clip on
two side-by-side HDTVs each connected to a commercially-
available video enhancement device that was set to one of
four ordinal enhancement levels (Off, Low, Medium or High).
Participants indicated their preference for one side over the
other (left or right display; two alternative forced choice)
using a computer mouse. Participants watched each video clip
for the entire duration or stopped the clip as soon as they
decided which one they preferred. If a participant had no
preference s/he was asked to select left or right at random.
Participants practiced the preference task until they understood
the procedure. Every subsequent trial proceeded automatically
after the participant indicated his or her preference on the
previous trial. All 40 participants made 64 comparisons of
64 video clips, which took about an hour (more information
available in section 2.5).

Participants were told that the two video clips on the two
displays may or may not look different. We did not use
the word “enhancement” in our instructions to avoid biasing
the participants, as this word has a positive connotation.
The participants were unaware that video quality was being
assessed; they were told that they were control participants
in a study of a rehabilitation device for vision impairment.
This created an application-independent environment that is
considered desirable for image quality evaluation [38].

During pilot testing, debriefing of participants made us real-
ize that there may be substantial differences in individual pref-
erences. Some participants claimed to like a more “natural”
or “smoother” appearance to video (i.e., enhancement Low
or Off). We named this group “Smooth”. Other participants
preferred “brighter” or “sharper” (typically, more enhanced)
video. We named this group “Sharp”. Individual differences in

preferences are potentially important, so combining data from
all participants may mask such variability in enhancement
preferences, possibly misrepresenting some or all participants.
To account for such individual differences in enhancement
preferences, upon completion of the 64 video clip compar-
isons, participants in the main study were debriefed by asking
them to describe (in their own words) how they made their
preference decisions. Using those descriptions, we classified
participants into the two groups identified in the pilot testing.
In addition, contrary to our expectations, many participants
made comments during the debriefing that indicated that their
preferences were affected by video content, so a post-hoc
analysis was performed, as described in section 2.4.

B. Hardware Components

Two 42” HDTVs (VIZIO VO42L FHDTV10A, 16:9 aspect
ratio) that were manufactured in the same month, had con-
secutive serial numbers, and were essentially identical in all
important respects were used for pair-wise comparisons. There
were no appreciable differences in the measured luminance
and color properties of these two displays. A video clip was
shown on these two HDTVs simultaneously. The source video
was duplicated using a HDMI splitter (HSP12 HDMI Splitter-
1-in 2-out, ConnectGear, Inc., Fremont, CA) and the video
clips were processed independently by two video enhancement
devices (PureAV RazorVision, Belkin International, Inc., Los
Angeles, CA) that were each connected to one of the HDTVs
(Figure 1). Measured luminance variability for the grayscale
range 16–235 was within 5% between the two HDTVs with
all hardware connected (i.e., PureAV Razor Vision device and
HDMI splitter). The Rec.709 specification for digital image
data [39] recommends using the range 16 to 235 for HDTVs,
rather than 0–255. This places “pure black” at code 16 and
“pure white” at code 235. Interface codes 0 and 255 are pro-
hibited from video data. 8-bit codes between 1 and 15 provide
“footroom” and 236–254 provide “headroom” to accommodate
filter undershoots and overshoots. Although the HDTVs were
connected to a computer, which would normally use the full 0-
255 range, when video clips were displayed by the computer,
the appropriate transformations were made to conform to Rec
709. The video signal came from a Windows computer (EVGA
Nforce680i Sli motherboard, Intel Core 2 Quad, 2.5GHz, video
card: EVGA NVIDIA GeForce 9800 GX2).

To allow examination of potential display differences, the
two HDTVs were physically swapped after testing the first
20 of the 40 participants. Also, to minimize the influence
of side biases on the final outcome measure, the presentation
side and the level of enhancement were counterbalanced for
each participant (i.e. each participant saw each of the 16
possible permutations of enhancement level pairs crossed with
presentation side an equal number of times).

C. Viewing Distance

Viewing distance recommendations for a 42” monitor from
various sources that we located range from 5.3’ to 10.5’ and
may not have any scientific basis. The scan-line pitch subtends
an angle of about one minute of arc for these 42” HDTVs
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Fig. 1. Hardware components and their connections used in the experimental
setup.

from about 5.3’. In a small pilot study, it was determined that
a viewing distance of about 7’ was more comfortable and this
distance was used for the main study. The two HDTVs were
angled towards each other (148°) so that the center of each
display was perpendicular to the participant (Figure 1).

D. Stimuli

High definition 1080p (scaled to 1920 × 1080) movie trail-
ers and documentary videos were downloaded (dates: October
2008 to February 2009) from http://www.apple.com/trailers/
and http://www.apple.com/quicktime/guide/hd/. The calcu-
lated video compression was estimated to be about 100 to 1.
The downloaded videos were edited using QuickTime 7 Pro
(Apple Inc., Cupertino, CA) into 30-s video clips. Seventy six
video clips were selected for use in the main study. Additional
video clips were used for the practice trials.

Fullerton et al. [7] found only small differences in desired
enhancement level between some of their four video categories
(low motion, high motion, cartoon and dark). Therefore, we
did not select the 76 video clips based on content. The movie
trailers tended to have substantial human face content and
the documentaries mainly had nature scenes. Despite our
expectation that video content would not affect the responses
to video enhancement, during the debriefing some of our

TABLE I

THE NUMBER OF VIDEO CLIPS (OUT OF 76) THAT WERE RATED AS

HAVING HIGH AND LOW LEVELS OF THAT CATEGORY OF VIDEO

CONTENT. THE NUMBERS OF VIDEO CLIPS FOR EACH VIDEO

CATEGORY DO NOT SUM TO 76 BECAUSE SOME VIDEOS

HAD AN AVERAGE RATING BETWEEN 2 AND 3

participants reported making preference decisions based on
content, especially when the video clips had human faces.
Therefore, we conducted a post-hoc rating of video content
for four categories: presence of human faces, human figures,
nature, and man-made objects (“human figures” indicated that
a person was present, but his or her face was not visible or
not important). Four naïve participants who did not participate
in the main study of video preferences were asked to rate the
presence based on the importance of each category, as though
they would have to describe the video clip to another person
who had not seen it. Each rating scale ranged from 0-5, with 0
being absent and 5 being always present. The responses of the
four participants were averaged for each rating category and
for each video clip. To include video content in the binary
logistic regression analysis, video clips were considered to
have high content (e.g. presence of faces) if the average rating
was 3 or greater, and to have low content if the average rating
was 2 or less. The number of video clips that were found to
have high and low ratings for each video-content category is
shown in Table 1.

The remaining video clips (e.g. the 13 in the Face video
content category) were not included in the video content
analysis on preference (but were used in all other analyses).
The Face scale was negatively related to the Nature (Fisher
exact test, p < 0.001) and Man-made Objects (p = 0.004)
scales. For example, few video clips had both high Face and
high Nature content (n = 1) or both low Face and low Nature
content (n = 7). The Human-figure and Man-made Objects
categories were slightly positively related (p = 0.06) with
29 video clips having a low rating on both, 9 clips having
high rating on both, and 14 clips that were rated differently
on the two scales. There were no significant relationships
between other video-content category pairs. Because we had
not planned an analysis of video content, video content was
not balanced between participants and with respect to enhance-
ment comparison pairs (e.g. low-content with Low versus
High). There were some participants who did not experience
particular enhancement level combinations (e.g. low Man-
made Objects with High versus Medium). However, mixed-
effects regression analyses are robust to such “missing data”,
particularly since, across all participants, there were many
comparisons of each enhancement comparison pair for each
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Fig. 2. Illustration of the Original image (upper left) and the three
enhancement levels: Low (upper right), Medium (lower left) and High (lower
right).

video content category (the least was 67 for comparisons for
high-Man-made, Original versus Medium).

E. Image Enhancement

Video clips were enhanced in real time using the commer-
cially available PureAV RazorVision device (Belkin Interna-
tional, Inc., Los Angeles, CA) that performed an adaptive local
contrast enhancement [40], [41]. Briefly, the enhancement
algorithm calculated the mean local luminance, which is then
subtracted from the original image to produce a high-pass
filtered version. The high-pass filtered version is amplified
by an enhancement gain control that may be determined
by multiple variables, including local mean luminance. To
avoid image distortions (e.g., saturation), higher enhancement
gain is adaptively applied to pixels in areas with moderate
local mean luminance more than to pixels that have extreme
luminance (bright or dark). The size of the Gaussian kernel
used for local averaging was 9.1% of the screen width and thus
spatial frequencies above 0.5 cycles/degree were enhanced in
our viewing distance. To illustrate the available enhancement
levels, an example still image photographed from one of
the video clips at the four enhancement levels is shown in
Figure 2.

Each HDTV was connected to a separate PureAV RazorVi-
sion device to process the video clip independently (Figure 1).
RazorVision can be set to one of four enhancement levels (Off,
Low, Medium or High). All 16 (4 × 4) possible combinations
of enhancement levels were compared (Table 2). Four of these
16 comparisons were between identical enhancement levels
(shaded cells in Table 2), which were included to test for
response (side) and display biases. Each of the 16 comparisons
was made 4 times for a total of 64 comparisons per participant.
A MATLAB program controlled the presentation order of the
64 comparisons, randomly selecting 64 video clips from the
pool of 76 video clips. No video clip was seen twice by any
participant. Control of the PureAV RazorVision device was
automated to present the desired enhancement level using a
Visual C++ program, triggered by the MATLAB program.
We used VLC media player (0.9.6) (www.videolan.org) to play
the video clips.

F. Data Analysis

Thurstone perceptual scales derived from pair-wise compar-
isons represent the relative preference for one stimulus (e.g.
enhancement level) over each other [19], [20], [31], [34].
By convention, the lowest relative preference score is set
to zero, and the remaining relative preference scores are
scaled accordingly to preserve the relative distances among the
rated items. Thus, this perceptual scale orders the items from
least to most preferred. Binary logistic regression has been
used to obtain a Thurstone-like perceptual scale along with
the statistical significance for the differences between stimuli
[32], [34]. Since logistic regression does not account for the
correlation between responses (i.e. assumes independence of
data), we used crossed-random, mixed-effects logistic regres-
sion, as described in detail in the Appendix. In steps described
in the Appendix, the final model was constructed:

ai j = (
β1 + βg1 + βc1

)
Xij1 + (

β2 + βg2 + βc2
)

Xij2,

+ (
β3 + βg3 + βc3

)
Xij3 + βS X S + βd Xd + ϕi+ϑj+εij

(1)

where ai j was the exponent of the logistic function
(Eq. A3), βk were coefficients for each stimulus, Xijk , at
enhancement level k, βgk were coefficients of indicator vari-
ables for the reported-preference Group (Sharp or Smooth)
at each enhancement level, βck were coefficients of indicator
variables for the video-Content (low or high), βs was a
coefficient for the Side (left or right), βd , was a coefficient for
the Display (a or b), φi were coefficients for each participant, i ,
and θ j were coefficients for each video, j .

To construct a Thurstone-like perceptual scale, coefficients
for each of the enhancement levels obtained were normalized
to have a range of 1 unit. Unlike the traditional approach
of setting the least preferred level to zero, we anchored this
perceptual scale by fixing the preference level for the original
video clips (Off condition) to zero, while maintaining the
range of 1. Thus, an enhancement level that was preferred
less than the original video clip received a negative value.
The corresponding significance levels (p-values) of the relative
preferences were calculated for the Wald χ2 statistic1 for
the coefficients, providing comparisons between enhancement
levels.

G. Participants

Forty normally-sighted participants (ages: 20–83y, median
age: 32y) consented to participate. The study was approved by
the Institutional Review Board of the Schepens Eye Research
Institute. Preliminary screening of the participants included
self-report of ocular health, measures of their visual acuity
and contrast sensitivity for a 2.5 degree-high letter target and
evaluation of central retinal health using retinal photography
(Nidek MP-1, Nidek Technologies, Vigonza, Italy). All the
participants had visual acuity of 20/25 or better, letter contrast
sensitivity of 1.675 log units or better and steady central
fixation with no evidence of retinal defects.

1Caution needs to be applied when proportions approach 100% or 0% as it
can result in the Hauck-Donner effect. [34], [42].
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TABLE II

EXAMPLE PREFERENCE MATRICES FOR TWO PARTICIPANTS, REPORTED FOR THE 16 POSSIBLE ENHANCEMENT-LEVEL COMPARISONS, EACH MADE 4

TIMES. PARTICIPANT 1 (LEFT MATRIX) IS REPRESENTATIVE OF THE SHARP GROUP AND PARTICIPANT 2 (RIGHT MATRIX) IS REPRESENTATIVE OF THE

SMOOTH GROUP. THE SHADED CELLS ON THE DIAGONAL REPRESENT COMPARISONS OF THE SAME ENHANCEMENT LEVELS APPLIED TO THE LEFT

AND RIGHT HDTVS. EACH CELL IS READ AS LEFT HDTV PREFERRED OVER THE RIGHT HDTV. HENCE, FOR THE FIRST ROW, FOR PARTICIPANT 2,

LEFT OFF WAS PREFERRED 3 TIMES (OUT OF 4) OVER RIGHT OFF, RIGHT LOW AND RIGHT MEDIUM, AND WAS PREFERRED 4 TIMES OVER OR

RIGHT HIGH. FROM THE FIRST COLUMN FOR PARTICIPANT 2, LEFT LOW WAS PREFERRED ONCE OVER RIGHT OFF. THUS, FOR PARTICIPANT 2,

IN TOTAL LOW WAS PREFERRED 4 TIMES, OUT OF 8, OVER OFF

III. RESULTS

A. Overall Preference Results

All 40 participants completed the 64 planned trials. Crossed-
random, mixed-effects binary logistic regression for all par-
ticipants’ preferences combined (Equation A5,2 χ2 = 26.7,
df = 3, p < 0.001) was performed with all 2560 trials
from the 40 participants. When including Display and Side
(Equation A6,3 χ2 = 31.0, df = 5, p < 0.001), no bias
was found for Display (HDTVa or HDTVb; p = 0.46), that
is, both Displays were equally preferred, but there was a
preference for the right side (p = 0.04). The side bias was
mainly associated with the condition in which the two stimuli
had equal levels of enhancement (n = 640 trials, p = 0.06),
and not when the stimuli had different enhancement levels
(n = 1920 trials, p = 0.18). The same-stimulus comparisons
were included to evaluate side bias and were not used to
analyze the overall preference data. Our results support prior
reports that participants (or at least some of them) were poor
in equally dispersing their ‘guess’ responses in a two alternate
forced choice task [43], [44]. Overall, Low and Medium were
preferred over Off and High (p ≤ 0.024), and Low and
Medium (p = 0.35) and Off and High (p = 0.14) were
not significantly different from one another (Equation A6).
Figure 3 shows that, overall, there was a non-monotonic
response (inverted U-shape) to the video enhancement. As
discussed below, such non-monotonic behavior is not expected
when compression level is increased. The inverted U-shape
obtained here is comparable to studies involving quality
judgment for brightness [45], color [46] and stereoscopic
depth [47].

B. Two Types of Preferences

Participants described their preference criteria for video
quality in their own words at a debriefing following the
completion of the 64 trials. After reviewing these criteria 39

2Equivalent to equation A8 with βgi = βci = βs = βd = 0.
3Equivalent to equation A8 with βgi = βci = 0.

Fig. 3. Video-enhancement preferences, for all 40 participants, were non-
monotonic. Error bars are 95% confidence intervals of the relative preferences
derived from the standard errors of the logistic regression coefficients.

of the 40, participants could be assigned to two groups. One
group of participants (n = 12) preferred more clarity and
scrutinized the clarity of small details in the image (“Sharp”
Group). The other group of participants (n = 27) preferred
smoother human faces yet they too preferred more clarity for
nature scenes (“Smooth” Group). One participant preferred
enhancement for neither human faces nor for nature scenes.
This participant was not assigned to either group but was
retained for the overall data analysis (section 3.1). Binary
logistic regression was performed with the participant group
(Sharp or Smooth) included (Equation A7,4 χ2 = 83.3,
df = 8, p < 0.001) and provided an improvement (χ2 =
61.3, df = 3, p < 0.001) over the all-participants model
(Equation A6).

Figure 4 shows that the Sharp group most preferred Medium
enhancement, which was significantly preferred to Low
(p = 0.008) and Off (p < 0.001) but was not significantly
different from High ( p = 0.51). Off was least preferred,
significantly less than Low (p < 0.001). The Smooth group
most preferred Low enhancement, but it was not significantly

4Equivalent to equation A8 with βci = 0
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Fig. 4. Enhancement preferences of the Sharp (n = 12 triangles) and Smooth
(n = 27, circles) groups. Error bars show 95% confidence intervals derived
from the standard errors of the logistic regression coefficients.

different from Medium (p = 0.64) or Off (p = 0.15). High
was significantly least preferred (p ≤ 0.025) when compared
with the other 3 levels (analysis applied for all images).

C. Preferences Depend on Video Content

Many of the Smooth participants reported preferring
enhancement of nature scenes but not of faces. If so, relative
preferences should differ based on the video content rating
levels (high or low) for the face and nature categories. For
example, more enhancement should be preferred for Non-
Face (low face content) video clips than for Face (high face
content) video clips. Conversely, more enhancement may be
preferred for Nature (high nature content) than for Non-
Nature (low Nature content) video clips. Post-hoc analyses for
each video classification were performed (Equation A8): Face
(χ2 = 135.0, df = 11, p < 0.001); Nature (χ2 = 127.9,
df = 11, p < 0.001); Human-figure (χ2 = 86.8, df = 11,
p < 0.001); and Man-made-Objects (χ2 = 83.4, df =
11, p < 0.001) categories. Compared to Equation A7, the
inclusion of both Face and Nature video categories (Equa-
tion A8) substantially improved the model (χ2 > 53, df = 3,
p < 0.001), while the inclusion of the Human-figure (χ2 =
15.2, df = 3, p = 0.002) and Man-made (χ2 = 10.1, df = 3,
p = 0.02) categories made smaller improvements in the fit.

Both the Smooth and Sharp groups had a lower prefer-
ence for enhancement of Face than Non-Face video clips
(p < 0.001; Figure 5a). Conversely, both groups had a
higher preference for enhancement of Nature than Non-Nature
video clips (p ≤ 0.001; Figure 5b). Similarly, for both the
Human-figure (p ≤ 0.02; Figure 5c) and the Man-made-
Objects (p ≤ 0.08; Figure 5d) categories, there was a higher
preference for enhancement of video clips with a higher rating
than for those with a low rating (“Non”). That all the other
three video-content categories had a different enhancement
preference pattern to the Face video content category supports
the conclusion that human face content was a major factor in
the enhancement preferences of participants in our study.

D. Multimodal Preference Distribution of Objective Scores

Since the two groups, Sharp and Smooth, were deter-
mined based on the responses to questions about preference

decisions, we sought additional evidence of discrete preference
patterns using an objective method. A scalar was calculated for
each participant to represent his or her overall enhancement
preferences. The three enhancement levels, Low, Medium and
High, were arbitrarily assigned ranks of 1, 2 and 3, respectively
(Off was normalized to zero on the relative preference scale).
The normalized coefficients obtained for each participant were
weighted by the ranks and then summed. Examples for the two
participants from Table 2 are shown in Figure 6. The resulting
weighted sum was the participant’s Enhancement Preference
(EP) score. A higher EP score indicated a preference for
higher enhancement levels (e.g. Participant 1 in Figure 6).
The possible range for the EP scores was from −6 to +6,
the obtained EP scores ranged from −5.29 to +6 (mean
+1.23). Figure 7 shows the distribution of EP scores for all
participants.

The Smooth group had a wider range of EP scores than
the Sharp group (Figure 7), as expected since their preference
greatly varied with image type. The Sharp group had signif-
icantly higher EP scores than the Smooth group (t = 5.21,
p < 0.001). This is consistent with the logistic regression
analysis (Figure 4).

The EP score distribution appeared to be tri-modal
(Figure 7). Mixture modeling using Mixmod 2.1.1 [48]
indicated a significantly improved fit (χ2 = 16.75, df = 3,
p < 0.001) if the data were modeled with three Gaussian
distributions rather than two Gaussian distributions [49], and
two Gaussian distributions were significantly better than one
(p = 0.05). No significant improvement was observed if more
than three Gaussian distributions were used. The adjusted
Bayesian information criterion (BIC) improved from two to
three Gaussian distributions (p < 0.001), with no improve-
ment noted for models using more than three Gaussian dis-
tributions (p = 0.26 for four Gaussian distributions). There
was fair agreement between the subjectively-defined groups
and the groups identified by the mixture model (Kendall’s
Tau-b = 0.465, p = 0.002). It seems that the Smooth group
included the participants identified as having EP scores in the
low EP score and middle EP score distributions, while the
Sharp group were all within the high-EP score distribution.

E. Effect of Incomplete Comparisons

We applied a complete testing design comparing all
enhancement levels to each other. The preference analysis
method used here also enables determination of the relative
preference (i.e., the coefficients) and statistical significance
with an incomplete set of comparisons. Reducing the number
of comparisons made can reduce the burden and cost of such
studies and in some situations comparisons may be limited
by other factors. For example, Fullerton and Peli [50] used
a very similar device that implemented the same adaptive
enhancement algorithm, but only one enhancement level could
be displayed at a time. Therefore, only partial comparisons
were conducted; Off (no enhancement) was compared to each
of the other three enhancement levels but no comparisons were
made amongst the three enhancement levels. To determine
the effect of using partial comparisons like those used by



5152 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2013

Fig. 5. Relative preferences by group (Sharp and Smooth) for high and low ratings of video-content categories (a) Faces, (b) Human figures, (c) Nature,
and (d) Man-made Objects. The Face video-content category showed a response pattern that differed from the other three video-content categories, with
enhancement being less preferred for high-rating (Face) video clips than for low rating (Non-Face) video clips (note the reversal of order of filled and open
symbols from top to bottom). Error bars show 95% confidence intervals. To improve clarity, the group symbols are plotted with small offsets.

Fig. 6. Relative preferences of Participant 1 (triangles) and Participant 2
(circles) reported in Table 2. The calculated EP scores for Participant 1 (Sharp)
was +5.49 and that of Participant 2 (Smooth) was −5.21.

Fullerton and Peli [50], a subset of data from the present
study, that only included the comparisons made between the
Off level to the other three levels, was analyzed for all
the participants. The logistic-regression results obtained from
this partial comparison [34] were different from the results
obtained when all comparisons were made (Figure 8) and were
similar to the results obtained by Fullerton and Peli [50] with
the same constrained comparisons, particularly at the High
level of enhancement. Also, the results for this subset of data
obtained with logistic regression were different from those
obtained using Thurstone scaling, but were consistent with
the raw proportion of responses [34].

Fig. 7. The box plots for enhancement preference (EP) score for the two
subjectively-defined preference groups shows that the Sharp group had higher
EP scores. The median EP score is marked by the line within each box. The
horizontal extent of each box represents the interquartile range (IQR) and the
whiskers represent values within 1.5 times the IQR. The EP score distribution
was tri-modal as shown in the frequency plot. The three shades correspond to
the three groups identified by the multimodal fit. One column has members
of two different groups due to overlap of the fitted distributions.

F. Other Individual Differences

We found no evidence that image quality preferences
are related to conventional vision measures; there was no
significant correlation between EP scores and either visual
acuity (Spearman ρ39 = 0.15, p = 0.37) or letter contrast
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Fig. 8. Enhancement preferences shown for full data (same as Figure 3) and
when analyzed using only a partial set of the available comparisons in the
current study, those that included the Off level. The results of that comparison
are more similar to an earlier study [50] in which the 3 enhancement levels
were compared to Off. Error bars are 95% confidence intervals. To improve
clarity, the group symbols are plotted with small offsets.

sensitivity (ρ39 = −0.13, p = 0.42). In a normally-sighted
population the range of visual acuities and contrast sensitivities
are not large, thus reducing the probability of finding a
significant correlation. Even so, with increasing age, visual
acuity (ρ39 = 0.37, p = 0.02) and letter contrast sensitivity
(ρ39 = −0.45, p = 0.004) became worse, while EP score
did not change (ρ39 = 0.07, p = 0.69). Participants in the
Sharp group tended to be older than those in the Smooth
group (z = 1.87, p = 0.06) and were more likely to be
male (z = 1.88, p = 0.06), but age and gender were con-
founded. So, when corrected for age there was no gender
difference (z = 0.21, p = 0.83), and when corrected for gender,
there was no relationship between age and group (z = 0.80,
p = 0.42). There were no differences between the groups in
visual acuity (z = 0.40, p = 0.69) or letter contrast sensitivity
(z = 0.41, p = 0.68). We thought that video enhancement
preferences might relate to personality, however, a personality
questionnaire related to tolerance of blur [51] did not reveal
any relations with preferences in a subset of 25 participants
to whom the questionnaire was administered.

IV. DISCUSSION

Our study was designed to measure the subjective prefer-
ence of normally-sighted observers to motion videos enhanced
by a commercially-available device. That objective was
achieved. In general, the two lower enhancement levels
were preferred, but the highest available level was not liked
(Figure 3). Such a non-monotonic response to increasing
enhancement is common and expected with image enhance-
ments. However, we also uncovered two important effects: one
related to the observers, and the other related to the video
content.

We found that observers could be divided into at least
two groups; one that liked enhancement over all (Sharp)
and one that did not (Smooth) (Figure 4). That grouping of
participants based on a debriefing interview was confirmed by

an objective analysis (EP Score), which suggested a possible
third group with weaker or intermediate preferences (Figure 7).
That third group seemed to have been included in the Smooth
group by the debriefing classification. As it is possible that
the Smooth-Sharp group differences were an artifact or were
peculiar to our sample, we reanalyzed the data from two
published studies [50], [52] that measured preferences from
pair-wise comparisons. In the Fullerton and Peli study [50]
that investigated a very similar video-enhancement device,
the EP scores ranged from −6 to 6 for their 11 normally-
sighted participants and from −3 to 6 for their 20 low-vision
participants. The distribution of EP scores was slightly, but
not significantly, better fit with two Gaussian distributions
than with a single Gaussian (Mixmod 2.1.1: χ2 = 6.57,
df = 3, p = 0.17). In the Satgunam et al. study [52]
that investigated static-image enhancement with a different
enhancement algorithm, the EP scores ranged from −5 to 4.3
for their 24 low-vision participants, and it was best fit with a
bi-modal distribution (χ2 = 12.12, df = 3, p = 0.014, over
uni-modal, and tri-modal). Thus, our finding that observers
can vary widely in their preferences for enhancement was
confirmed; the between-observer effect was found to occur
with two image enhancement algorithms and in different
populations. Whether there are two or three separate groups
of preference types is not certain.

It has been suggested that differences between laboratories
in video quality measures can be attributed to differences
in the experience (with image quality) of the observers in
those study samples [18]. All observers were naïve in our
study and the other two studies [50], [52]. Our finding that
enhanced video quality preferences were not uniform across
observers (i.e. that between-observer variance reflects real
differences in response) may have important consequences for
the evaluation of computational image (video) quality metrics,
particularly if there are similar between-observer differences
in preference responses to image degradation (e.g. due to
compression). Most image degradation studies differ from
our image enhancement studies in two important ways: the
observer’s task (rating versus paired comparison) and the effect
of the intervention on perceived image quality (monotonic
versus non-monotonic). The non-monotonic preference that
we found for the enhancement (Figures 3 to 6 and 8) is not
expected for image compression or other degrading effects.
Most such studies and metrics presume that perceived image
quality data is normally distributed (e.g [12]–[17]), effectively
that the between-participant variance is due to measurement
noise. To evaluate this, we examined data from three studies of
image compression in which the observers reported perceived
image quality (“opinion score”). For two studies by one group
[13]–[17] the distributions of relative (difference) opinion
scores of the study participants (N = 13 to 29) were uni-modal
Gaussian distributions, and for a third study [12], between-
observer differences were apparent, but there was no obvious
shape to the distribution in the responses of the 16 participants.

In a study where noise was added to natural images of
tree bark, two participant preference patterns were noted [53].
One group found the noise-added image to be sharp while
another found it blurred. The authors attributed this difference
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to the observers’ specific attention to different image details, as
noted in the observers’ introspection. Using synthetic simple
images they found that added noise sharpened low spatial
frequency content and blurred high spatial frequency content.
Two preference patterns were also found in another study [54]
where one group of observers found rough textures to be
pleasant while another group did not. The authors in that study
however were unsure of the presence of two groups, and raised
concern about their experimental paradigm.

Future video- and image-quality observer studies may have
to consider that there may be at least two different groups
of observers. To classify an individual (to Sharp or Smooth),
representative sample videos, enhanced by at least two levels,
could be shown to observers who indicate their preferences
over the original videos. Such a method should easily identify
their preference pattern. Alternately, the enhancement could
be provided with two settings, one expected to be preferred
by each group, and the user can determine their preference by
switching between the two settings while watching a sample of
videos. If such differences are found with compressed images,
the computational metrics will have to be able to address such
a dichotomy in the population.

The second effect that we found was that video content
affected preferences for video enhancement. When human
faces were an important aspect of the content, our participants,
independent of their overall preference group (smooth or
sharp), preferred less enhancement than when face content was
not important (Figure 5). For the other three video-content
categories, Nature, Human Figures and Man-made Objects,
video enhancement preference patterns were the opposite of
that for Faces (Figure 5). This could not be explained by
the categorizations for Faces being the inverse of these three
categories (it was for Nature, but not for the other two). The
reason for this video-content effect is not clear. Discussions
with our study participants suggest that the enhancement
increased the visibility of facial features (e.g. skin blemishes)
in a way that was not “natural” and thus not preferred. This
is in agreement with an earlier study [55] that noted the
appearance of human skin to be a critical component in the
judgment of ‘naturalness’ of color reproduction. A similar
preference pattern was reported in a study that examined
enhancement of static images for mobile displays [56]. The
authors in that study recommended using one preset image
enhancement parameter for images human figures (defined
by detection of human skin coloration). However, our results
indicate different responses between faces and human figures
(Figure 5) suggesting that a face detection algorithm would
be more appropriate. To further examine whether such content
effects were found in image degradation studies, we analyzed
the data from such studies [13]–[15]. There were no images
with face content in one image-degradation database [12]
and the videos were not available for another [16], [17]. In
the LIVE image database [13]–[15], participants gave higher
ratings to images with face content independent of bitrate
(p < 0.001) and images with man-made-object content
received lower ratings when the bitrate was lower (p < 0.001).
Thus, it seems that image content can affect subjective ratings
of image quality when quality is degraded.

In a similar setting, studies of image compression, the
“desirability” (how much the participant liked the content of
the video) had an impact on video quality responses, with
a more desirable (liked) video clip being given a higher
rating [8]–[10]. Kortum and Sullivan [10] suggested that the
desirability effect may be related to engagement with the
content, in which case attention may be directed to regions
such as faces. We did not measure the desirability of our video
clips. We do not know how desirability can be determined
computationally.

This video-content effect suggests that preferences could be
predicted from current computational image quality metrics
with some video contents, but not with others. For example,
the visibility of minor facial skin blemishes may indicate
superior image quality from computational measurements but
may not be preferred by human observers, while the increased
visibility of details of room furnishings by the same algorithm
may be both superior for the computational metric and be
preferred by observers. For assessment of video quality, it
may be possible to include face detection within a computa-
tional metric, then using separate algorithms or parameters for
video content with and without predominantly human faces.
When using image enhancement, to overcome this preference
difference, it may be necessary to apply less enhancement
when faces are present or to regions that contain faces.
Computational measurements to evaluate enhanced video qual-
ity should capture the non-monotonic preferences of human
observers.

Most current computational image quality metrics are likely
to find an enhanced image to be of lower quality than the
original, even though our participants found the low and
medium levels of enhancement to be preferred (Figure 3).
Image quality metrics should be able to capture such effects
as image enhancement could be used to reduce bandwidth or
improve quality when bandwidth reduces image quality.

V. CONCLUSION

Video image quality can be effectively tested using side-by-
side pair-wise comparisons and scored using logistic regres-
sion that enables examination of possibly confounding factors.
While an incomplete test design that reduces the test burden
may be used and analyzed, care should be taken in such a
design, as incomplete comparison sets may adversely affect
the results. To avoid the effect of bias it may be impor-
tant to permit a “no difference” or equal quality response
[43], [44]. When choosing videos for image quality studies and
analyzing video quality, video content should be considered,
especially the presence or absence of human faces. Videos
used in observer study or computational study should match
the anticipated images to be used in an application. Between-
participant differences may reflect real individual differences
in perceived image quality. If between-observer effects or
content effects are found they need to be addressed in com-
putational image quality metrics. While we studied preference
for video enhancement, similar considerations and tools may
need to be applied to image quality evaluation in the field of
image compression. It is possible that not all our findings will
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TABLE A1

ILLUSTRATION OF THE LOGISTIC REGRESSION MATRIX FOR ALL 64 TRIALS FOR ALL 40 PARTICIPANTS AND USED FOR THE BINARY LOGISTIC

REGRESSION ANALYSES. STIMULI (ENHANCEMENT LEVELS) NOT PRESENTED DURING THE TRIAL ARE INDICATED BY 0. PRESENTED STIMULI

WERE ALLOCATED 1 OR −1 DEPENDING ON THE REPORTED PREFERENCE AND THE IDENTITY VECTOR (E), AS DESCRIBED IN THE TEXT.

THE PREFERRED STIMULUS IN EACH TRIAL IS SHOWN IN BOLD IN EACH ROW

be replicated in studies of perceived quality or preference for
compressed imagery.

APPENDIX

For the binary logistic regression analysis, each paired com-
parison was entered in a logistic regression matrix (Table A1),
where for each participant, i , for each video, j , of stimuli
k = r and k = s, the preferred stimulus (column), Xijr ,
was allocated +1 and the non-preferred stimulus, Xijs , was
allocated −1:

if Xijr � Xijs then Xijr = +1 and Xijs = −1 (A1)

where � is a left preferred indicator. All other row entries are
allocated zeros. As described by Lipovetsky and Conklin [32],
an identity vector (dependent variable column), ei , was ran-
domly assigned to a value of 0 or 1. When ei = 0 (“false”),
the signs of the responses for that comparison are reversed,
such that:

if Xijr � Xijs then Xijr = −1 and Xijs = +1. (A2)

The outcome of the analysis is independent of the proportion
of ei j = 0 comparisons, so long as 0 < p(ei j = 0) < 1, where
p(ei j = 0) is the proportion of comparisons with ei j = 0. The
binary logistic regression involved fitting the equation:

Pij = f (ai j ) = eai j

eai j + 1
= 1

1 + e−ai j
(A3)

where pi j was the probability of the response (for each
combination of participant and video, there was only one
comparison of two enhancement levels, i.e. each participant
only saw one video once). For the model, the responses to one
stimulus (e.g., Low enhancement) were fixed by not including
it, and the model was forced through the origin (no intercept
term). Thus, to compare four stimuli, the term ai j in equation
A3 was defined as:

ai j = β1 Xij1 + β2 Xij2 + β3 Xij3 + εi j (A4)

where βk , were the coefficients for each enhancement level
(stimulus), Xijk , and εi j was the residual error. Those

unknown parameters βk were estimated by a maximum like-
lihood procedure, common to generalized linear models, with
SPSS 11.5.0 (SPSS, Chicago, IL) and Stata/IC 12.1 for Mac
(StataCorp, College Station, TX). The computed coefficients
thus represented the relative preferences of the included stimuli
with the excluded stimulus having a relative preference of
zero. The statistical significance for stimulus k reported in each
analysis was for the difference between the excluded stimulus
and stimulus k. When n stimuli were compared, to obtain
statistical significance for all n(n − 1)/2 comparisons, the
analysis was performed n − 1 times, with a different stimulus
kept constant (excluded) from each analysis. In our case of
four stimuli the analysis was conducted three times.

Logistic regression presumes independence between data.
However, our data includes repeated measures from each
participant and for each video. No participant saw all videos,
and the comparison pair of enhancements applied to each
video varied between participants. This is known as a crossed-
random experimental design. Therefore, we fit a crossed-
random, mixed-effects logistic regression:

ai j = β1 Xij1 + β2 Xij2 + β3 Xij3 + ϕi + ϑ j + εi j (A5)

where ϕi were coefficients for each participant and θ j were
coefficients for each video. The side on which enhancement
was presented could influence responses, as some participants
may have an inherent response bias [43], [44] to choose the
display on the left or right side and the two HDTVs, while
perceived to be virtually identical, cannot be guaranteed to
be completely identical in every respect and so could have
influenced participants’ responses. To measure these effects,
Side and Display were included as covariate factors in the
model. With the responses, Xsi , for Side and, Xdi , for Display,
term ai j became:

ai j = β1 Xij1 + β2 Xij2 + β3 Xij3 + βs Xs

+βd Xd + ϕi + ϑ j + εi j . (A6)

When the preferred stimulus was on the right monitor,
Xsi = 1, and when on the left, Xsi = 0, except for
ei = 0 (“false”) when the assigned value of Xsi was reversed.
Similarly, when the preferred stimulus was on HDTVa,
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Xdi = 1, and when on HDTVb, Xdi = 0, except for ei = 0
(“false”) when the assigned value of Xdi was reversed.

To examine between-group differences (between partici-
pants in the Sharp and Smooth groups), an indicator variable,
g, was used, and the term ai j became:

ai j = β1 Xij1 + β2 Xij2 + β3 Xij3 + βg1Xij1 + βg Xi j2

+βg3 Xij3 + βs Xs + βd Xd + ϕi + ϑ j + εi j . (A7)

In this model, for simplicity of interpretation, the original
video clip (Off condition) was excluded. For participants in the
Smooth group, g = 0 and for the Sharp group, g = 1. Thus,
for the Smooth group, gX j i = 0, and the perceptual scale
was defined by the first three terms in Equation A7 only (i.e.
those that did not include g). The statistical significance of
differences between the two groups in responses to stimulus j
was then found using the coefficient βg j .

Equation A7 can also be written as:

ai j = (β1 + βg1)Xij1 + (β2 + βg2)Xij2 + (β3 + βg3)Xij3

+βs Xs + βd Xd + ϕi + ϑ j + εi j . (A7a)

To also examine the effects of video content, video-content
category (as described in section 2.4) an indicator variable, c,
was used, and the term ai j became:

ai j = (β1 + βg1 + βc1)Xij1 + (β1+βg1 + βc1)Xij1

+(β1+βg1+βc1)Xij1+βs Xs +βd Xd + ϕi + ϑ j + εi j .

(A8)

For each of the four video categories, when the video clip
had a high rating on that scale (e.g., Face ≥3) video clips
were coded with c = 1 and when the video clip had a low
rating (e.g., Face ≤2), the video clip was coded with c = 0.
Statistical significance for the differences between the high and
low content levels in responses to stimulus j were obtained
from the coefficient βcj . A more complex model that included
an interaction between subjective group and video content was
also investigated, but it was found to provide no improvement
in the model (Wald χ2 ≤ 5.7, df = 3, p ≥ 0.13).
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Erratum to “Factors Affecting Enhanced Video
Quality Preferences”

PremNandhini Satgunam, Russell L. Woods,
P. Matthew Bronstad, and Eli Peli

In [1], a delay in communicating proof errors occurred. The paper
was published without corrections. The following corrections are
important.

The first name of the first author is PremNandhini.

The dates in the first footnote should read as follows.
Manuscript received March 14, 2012
Final revision received July 15, 2013
Accepted for publication August 29, 2013

Mentions in the text to section 2.4, section 2.5, and section 3.1
should be read as Sections II.D, II.E, and III.A, respectively.

Mentions in the text to Table 1 and Table 2
should be read as Table I and Table II, respectively.

Table II legend should read as follows:
“…thus for participant 2, in total low was preferred 2 times, out of 8,
over off.” (not 4 times, out of 8, over off).

Page 5149: Equation (1) should read:

ai j = (
β1 + βg1 + βc1

)
Xi j1

+ (
β2 + βg2 + βc2

)
Xi j2

+ (
β3 + βg3 + βc3

)
Xi j3

+βs Xsi + βd Xdi + φi + θ j + εi j . (1)

Equation (1) is the same as Equation (A8) in the appendix.

Manuscript received October 28, 2013; accepted October 28, 2013. Date
of current version January 9, 2013.

P. Satgunam is with Hyderabad Eye Research Foundation, L. V. Prasad
Eye Institute, Hyderabad 500034, India (e-mail: premnandhini@lvpei.org).

R. L. Woods, P. M. Bronstad, and E. Peli are with the Harvard
Medical School, Schepens Eye Research Institute, Massachusetts Eye and
Ear, Boston, MA 02114 USA (e-mail: russell_woods@meei.harvard.edu;
matthew_bronstad@meei.harvard.edu; eli_peli@meei.harvard.edu).

Digital Object Identifier 10.1109/TIP.2013.2288513

Page 5150: Footnotes should read as:
2Equivalent to equation 1 with βgk = βck = βs = βd = 0.
3Equivalent to equation 1 with βgk = βck = 0.
4Equivalent to equation 1 with βck = 0.

On page 5155: Equation (A5) should read as:

ai j = β1 Xi j1 + β2 Xi j2 + β3 Xi j3 + φi + θ j + εi j . (A5)

On page 5155: Equation (A6) should read as:

ai j = β1 Xi j1 + β2 Xi j2 + β3 Xi j3 + βs Xsi

+ βd Xdi + φi + θ j + εi j . (A6)

On page 5156: Equation (A7) should read as:

ai j = β1 Xi j1 + β2 Xi j2 + β3 Xi j3 + βg1 Xi j1 + βg2 Xi j2
+ βg3 Xi j3 + βs Xsi + βd Xdi + φi + θ j + εi j . (A7)

On page 5156: Equation (A7a) should read as:

ai j = (
β1 + βg1

)
Xi j1 + (

β2 + βg2
)

Xi j2 + (
β3 + βg3

)
Xi j3

+βs Xsi + βd Xdi + φi + θ j + εi j . (A7a)

On page 5156: Equation (A8) should read as:

ai j = (
β1 + βg1 + βc1

)
Xi j1

+ (
β2 + βg2 + βc2

)
Xi j2

+ (
β3 + βg3 + βc3

)
Xi j3

+ βs Xsi + βd Xdi + φi + θ j + εi j . (A8)
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